

Search for SUSY in the Golden Mode

Anadi Canepa

What do we know?

The Standard Model has been extremely successful

Precision EWK measurements

Yet to discover

What is the Universe made of?

SUSY can explain it

New proposed symmetry of Nature

- SM fermion
 ↔ MSSM boson

mSUGRA breaking scenario

SUSY is a broken symmetry

- Gravity breaks SUSY
- Model with 5 parameters
 - Masses m_{1/2}, m₀
 - Coupling A₀
 - Higgs sector: sgn(μ), tanβ
- New parity R_D is conserved
 - R_p = +1 for SM particle
 - R_p = -1 for SUSY particle

mSUGRA breaking scenario

SUSY is a broken symmetry

- Gravity breaks SUSY
- Model with 5 parameters
 - Masses m_{1/2}, m₀
 - Coupling A₀
 - Higgs sector: sgn(μ), tanβ
- New parity R_D is conserved
 - R_p = +1 for SM particle
 - R_p = -1 for SUSY particle

Charginos and Neutralinos

W,H,B mix into charginos and neutralinos $(\tilde{\chi})$

- $\tilde{\chi}_1^0$ is the LSP
- R_p conserved \Rightarrow LSP stable
 - → dark matter candidate
 - → key for our search

Tevatron Performance

Already delivered 1.6 fb⁻¹
Exploring up to 0.7 fb⁻¹
Peak instantaneous luminosity 1.82·10³² cm⁻²s⁻¹

CDF @ Tevatron

Muon system

Em Calorimeter

Had Calorimeter

 $\eta =$

B field: 1.4 T

Drift chamber

Inner tracker (Si)

The Golden Mode

Three leptons and Missing Energy in the Transverse plane

The Search

σ·BR ~ 0.2 pb

- Need good acceptance
 - achieved using different trigger paths

CHANNEL	p/E _T 's (GeV/c)
μμ	20, 5, 5
μ e	20, 5, 5
ee	20, 5,5
μμ	5, 5, 5
ee	15, 5, 4
LS $\mu^{\pm}\mu^{\pm}$, $e^{\pm}e^{\pm}$, $\mu^{\pm}e^{\pm}$	20,10

Wide p_T range

The Search

σ·BR ~ 0.2 pb

- Need good mSUGRA parameter space coverage
 - achieved using different requirements for the 3rd lepton

CHANNEL	3 rd lepton
μμ	μ/e
μ e	μ /e
ee	μ /e
μμ	μ/e
ее	Track
LS $\mu^{\pm}\mu^{\pm}$, $\mathbf{e}^{\pm}\mathbf{e}^{\pm}$, $\mu^{\pm}\mathbf{e}^{\pm}$	

SM Backgrounds

Small contributions from

- Diboson WZ, ZZ
- Top pair production
 - jet activity
- QCD
 - Low MET
 - Non isolated leptons

DOMINANT contributions from

- Hadrons or γ(→e⁺e⁻)
 - Low MET
 - Back to back leptons
- Diboson W_γ(→e⁺e⁻)

SUSY and SM Cross Sections

What are the challenges?

- In depth understanding of the material to simulate photon conversions
- Data driven measurement of the leptons misidentification rate
- Data based heavy flavor estimate
- MET correction sensitive to
 - quality of track reconstruction
 - knowledge of the calorimeter geometry
 - simulation of extra interactions

Reducing the background

Veto resonances (J/Ψ, Upsilon, Z)

Dilepton Events

 $\sim 10^3$

Trilepton Events

~ 10

Veto events with jet activity

Total acceptance

Acceptance after 3rd lepton requirement and MET > 15 GeV

Do we understand the SM?

Inclusive investigation of observables in dilepton events

More detailed investigation

Up to 19 inclusive "control regions"

The "signal box"

Channel	SM	SUSY benchmark	S/√B
μμ + I	0.6 ± 0.1 ± 0.1	1.6 ± 0.1 ± 0.2	2
μ e + I	0.8 ± 0.1 ± 0.2	1.0 ± 0.1 ± 0.1	1.1
ee + I	$0.17 \pm 0.03 \pm 0.04$	0.5 ± 0.1 ± 0.1	1.2
μ μ + Ι	$0.13 \pm 0.03 \pm 0.03$	0.17 ± 0.01 ± 0.03	0.5
ee + track	0.5 ± 0.1 ± 0.1	0.72 ± 0.04 ± 0.05	1.0
LS	6.8 ± 0.5 ± 1.0	3.2 ± 0.1 ± 0.5	1.2

Results !!!

Channel	SM	Data
μμ + I	0.6 ± 0.1 ± 0.1	1
μ e + I	0.8 ± 0.1 ± 0.2	0
ee + I	0.17 ± 0.03 ± 0.04	0
$\mu\mu$ + I	0.13 ± 0.03 ± 0.03	0
ee + track	0.72 ± 0.04 ± 0.05	1
LS	6.8 ± 0.5 ± 1.0	9

Results !!!

Channel	SM	Data
μμ + I	0.6 ± 0.1 ± 0.1	1
μ e + l	0.8 ± 0.1 ± 0.2	0
ee + I	0.17 ± 0.03 ± 0.04	0
μμ + I	0.13 ± 0.03 ± 0.03	0
ee + track	0.72 ± 0.04 ± 0.05	1 🗸
LS	6.8 ± 0.5 ± 1.0	9 🕶

CDF Run II Limit

Analyses are combined exclusively and a frequentist based limit is calculated

EXCLUSION LIMIT

m ~ 127 GeV/ c^2 o·BR ~ 0.25 pb

SENSITIVITY

m ~ 140 GeV/c² σ·BR ~ 0.2 pb

D0 Limit m ~ 117 GeV/c² in similar scenario

Systematic uncertainties have negligible impact Need more statistics!

Outlook

Searching for New Physics is exciting
Trileptons are an excellent signature for SUSY!

No evidence for SUSY production in ~ 1fb⁻¹ Set limit on Chargino mass ~ 127 GeV/c²

With ~ 8 fb⁻¹, sensitive up to Chargino mass ~ 240 GeV/c²

Back up

Data

Channel	Data (pb ⁻¹)
μμ + l	745
μ e + l	745 (680)
ee + I	346
μ μ + Ι	312
ee + track	607
LS	704

Channel	Trigger Eff.
μμ + I	Cmup=90-92%
	Cmx=96-97%
μ e + I	same
ee + I	CEM=96%
μ μ + Ι	Cmup=89%
	Cmx=91%
ee + track	CEM = 92%
LS	Cmup=90-92%
	Cmx=96-97%
	CEM = 96-98%

Systematic uncertainties LS

luminosity	5%
fakes	4%
ID + trigger	1%
conversions	11%
Theory predictions	5%
Statistical uncert.	7%
TOTAL	15%

Systematic uncertainties ee+track

luminosity	6%
fakes	13%
Theory predictions	7%
JET Energy scale	17%
PDF	2%
ISR	9%
FSR	6%
TOTAL	31%

Systematic uncertainties µµ low pt

Luminosity	1%
fakes	21%
Theory predictions	7%
Muon ID	1%
Muon isolation	2%
Heavy Flavor	6%
TOTAL	22%

Systematic uncertainties µµ high pt

Luminosity	4%	
fakes	16%	
Theory predictions	5%	
Muon ID	4%	
Jet Energy scale	6%	
Conversion	10%	
ISR	4%	
PDF	2%	
TOTAL	22%	

Systematic uncertainties µe (CEM-plug)

Luminosity	4% - 5 %
fakes	13% - 8%
Theory predictions	5%
Muon ID	4% - 4%
Jet Energy scale	7% - 2%
Electron ID	4% - 14%
Conversion	7%
ISR	4%
PDF	2%
TOTAL	19%

Systematic uncertainties ee

Luminosity	6%
fakes	13%
Theory predictions	7%
Electron E scale	3%
Jet Energy scale	4%
Electron ID	7%
Conversion	11%
ISR	4%
PDF	2%
TOTAL	22%

Heavy Flavor estimate low pt muons analysis

- Select HF rich invert d0
- Fit DY + HF to data in OS and LS
- Get a scale factor for OS and one for LS
- Run the analysis on the HF rich sample but scaling up if needed the contribution

ee track

Track fake rate

- Fake rate per event in Z data
- Checked as a function of # tracks and Ht
- Applied to MC if no third genp track
 - DY WW W/Z ZZ

LS events

* e=73 GeV e=41 GeV met 96 GeV, pile up 3rd ele from different vertex

 $*e\mu \mu$ CMX=66 GeV, e= 10 GeV, MET=37 GeV

e=103 GeV e=5 GeV non iso Gamma Met=25 GeV 35

* e=107 GeV

 $e\mu$ e= 74 GeV μ CMX=15 GeV MET = 31 GeV

Two electrons above 100 GeV each. In the same event we have a photon of 15GeV, Met of 25GeV and a third electron of 5GeV that does not pass the calorimeter isolation This event has more than 100GeV
Met. There are lots of piled-up
interactions. the third electron does
not come from the same interaction
vertex
36

Probability of the observed spectrum is 25% Hypothesis = SM is null

Projections

mSUGRA limit

